If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+105x+50=0
a = 1; b = 105; c = +50;
Δ = b2-4ac
Δ = 1052-4·1·50
Δ = 10825
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{10825}=\sqrt{25*433}=\sqrt{25}*\sqrt{433}=5\sqrt{433}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(105)-5\sqrt{433}}{2*1}=\frac{-105-5\sqrt{433}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(105)+5\sqrt{433}}{2*1}=\frac{-105+5\sqrt{433}}{2} $
| (4x-16)=(10x+56) | | 28=(x-16) | | 30(x+10)=0 | | 24=–4(w–6) | | u+41=52 | | 2n+5=4n–7 | | (54+x)=(5x-6) | | X+100-y=180 | | a=3.2=5.5 | | 10^2+b^2=20^2 | | 13.2=y-4.4 | | 4/5(c+12)=-2 | | 2/8x+1/2x=44 | | 3(2x−1)−2x=10 | | 5x-16+4x+34=180 | | Y=0.5x+3.50 | | 2(1/4)+1/2x=44 | | 2(3-x)=2x+5 | | 8^x=1/343 | | 2x+11=2x+5 | | x+6+9=2x | | 7x+3=2 | | 7x+3=2 | | (4/5x)+(1/5x)=87 | | 7+n=-14 | | 17-10=m | | 0.8r=2.4 | | -4p=-2.4 | | 8b+12.3-6=8.1+7b+4.2 | | 6x-3=x+20 | | x+3(-x)=0 | | 3x-6+4x-2=5x-2 |